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We provide a simple proof that graphs in a general class of self-similar networks have zero percolation

threshold. The considered self-similar networks include random scale-free graphs with given expected

node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing

scale-free networks, and many real networks. The proof and the derivation of the giant component size do

not require the assumption that networks are treelike. Our results rely only on the observation that self-

similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in

the hierarchy. We conjecture that this property is pivotal for percolation in networks.
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Percolation is a fundamental phenomenon in nature.
Recent developments in percolation theory [1] open new
perspectives in many areas of statistical mechanics and
quantum field theory [2]. In statistical mechanics of com-
plex networks, the percolation properties of a network
determine its robustness with respect to structural damage,
and dictate how emergent phenomena depend on the net-
work structure [3]. Large clusters of connected nodes
emerge above a critical value of some network parameter,
e.g., the average degree; below the threshold, networks
decompose into a myriad of small components. This
percolation threshold can be zero, meaning that networks
are always in the percolated phase. A classic example
is random scale-free networks with the power-law degree
distribution exponent ! lying between 2 and 3 [4,5].
The value of the percolation threshold, the size of the
giant component and the specifics of the percolation tran-
sition strongly depend on fine details of the network
topology [3]. This dependency hinders attempts to
define percolation universality classes, even though
some networks show some degree of percolation universal-
ity [6].

This problem is aggravated by difficulties in the analytic
treatment of percolation properties for networks with
strong clustering. A majority of the obtained analytic
results use the generating function formalism based on
the assumption that networks are locally treelike [7].
This assumption allows one to employ convenient tools
from the theory of random branching processes. The
assumed absence of loops implies, in particular, that clus-
tering is zero in the thermodynamic limit. This zero-
clustering approximation is valid for weakly clustered
networks where triangles do not overlap, but it is invalid
for networks with strong clustering and overlapping
triangles observed in many real systems [8]. Noticeably,
the exact results derived for some network models with

clustering can be mapped to treelike zero-clustering graphs
after appropriate transformations [9].
In this Letter, we provide a remarkably simple rigorous

proof for the absence of a percolation threshold in a general
class of self-similar networks. The proof does not rely on
the treelike assumption or on generating functions. It does
not depend on whether a network is weakly or strongly
clustered, and it applies equally well to equilibrium or
nonequilibrium networks. The proof relies only on network
self-similarity, defined as statistical invariance of a hier-
archy of nested subgraphs with respect to a network renor-
malization procedure. The percolation threshold is zero as
soon as the average degree in subgraphs is a growing
function of their depth in the hierarchy—a property char-
acterizing many real networks. We also calculate analyti-
cally the size of the giant component, supporting all the
results by large-scale numerical simulations.
Let Gðf"gÞ be an ensemble of sparse graphs in the

thermodynamic limit, where f"g is the set of model pa-
rameters. In the case of classical random graphs, for ex-
ample, set f"g is just the average degree hki. Consider a
transformation rule T that for each graph G 2 Gðf"gÞ
selects one ofG’s subgraphs. Denote the ensemble of these
subgraphs by GTðf"gÞ. The ensemble Gðf"gÞ is called self-
similar with respect to the transformation rule T if the
transformed ensemble is the same as the original one
except for some transformation of the model parameters,

G Tðf"gÞ ¼ Gðf"TgÞ: (1)

In what follows we describe three general types of graphs
to which this definition applies. The first two types are
equilibrium random scale-free graph ensembles belonging
to a general class of network models with hidden variables
[10]. The third one is a nonequilibrium ensemble of grow-
ing networks.
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Type I.—The graphs in this ensemble are constructed by
assigning to each node a hidden variable # drawn from the
power-law probability density $ð#Þ ¼ ð!$ 1Þ#!$1

0 #$!.
Without loss of generality, #0 can be selected such that
# % #0 is the expected degree of nodes with hidden vari-
able #, so that the degree distribution scales as a power-law
with exponent !. Each pair of nodes with expected degrees
# and #0 is then connected with probability rð#;#0Þ ¼
fð%##0Þ, where constant % fixes the average degree hki
in the constructed graphs, and function fðxÞ & 1 is an
arbitrary analytic function with fð0Þ ¼ 0. This type of
graphs includes as particular cases the maximally random
graphs with a given expected degree sequence [11], and
random graphs with arbitrary structural correlations [12].
In the former case,

fðxÞ ¼ 1

1þ 1=x
: (2)

Clustering vanishes in the thermodynamic limit, and there-
fore the treelike assumption holds.

Type II.—Besides having assigned expected degrees #,
nodes in this type of graphs are also uniformly distributed
in a homogeneous and isotropic D-dimensional metric
space [13]. Here, we consider a circle of radius R with a
constant density of nodes & ¼ N=ð2'RÞ, although all the
following results can be extended to an arbitrary dimen-
sion. The connection probability between a pair of nodes
with hidden variables # and #0 separated by distance d ¼
ð'$ j'$ j($ (0jjÞR on the circle ((’s are the node
angular coordinates) must be of the form rð#;(;#0; (0Þ ¼
hð d

%##0Þ, where function hmust be integrable. These graphs

have the same degree distribution as the type I graphs, but
clustering is finite in the thermodynamic limit, thanks to
the triangle inequality in the underlying metric space [13].
Therefore the treelike assumption does not hold for this
type of graphs.

The graph sparsity in the thermodynamic limit defines
constant % in the two cases as

%I ¼
hki

Nf0ð0Þ#2
0

!
!$ 2

!$ 1

"
2
; %II ¼

hki
2&I#2

0

!
!$ 2

!$ 1

"
2
;

(3)

where I ¼ R1
0 hðxÞdx. Since #0 and & are dumb parame-

ters, we see that unless functions f and h contain some
additional parameters, the described two graph ensembles
have only two independent parameters: the power-law
exponent ! and the average degree hki.

Consider now transformation rule T which simply re-
moves all nodes with hidden variable #<# T from a given
graph G in any of the two ensembles, where #T is some
predefined threshold. This transformation maps the origi-
nal graphG to its subgraphGT of sizeNT ¼ Nð#0=#TÞ!$1.
The hidden variables # of nodes remaining in GT are
distributed according to $Tð#Þ ¼ ð!$ 1Þ#!$1

T #$! with
# % #T . That is, the power-law exponent in GT is the
same as in G, !T ¼ !. The transformation does not affect

the hidden variables of the nodes in subgraph GT .
Therefore the connection probability in GT is exactly the
same as in the original graph G, which means that the
ensemble of transformed graphs is identical to the en-
semble of original graphs, except that the average degree
has changed. Specifically, the transformation of parameters
f"g ! f"Tg in the self-similarity definition in Eq. (1) is

!! !T ¼ !; hki ! hkiT ¼ hki
!
N

NT

"ð3$!Þ=ð!$1Þ
; (4)

which is the same for both type I and type II graphs [13].
Therefore, both ensembles belong to the same self-
similarity universality class.
Type III.—As opposed to the first two equilibrium en-

sembles, the graphs of this type are grown by adding nodes
one by one. Each node i brings mi new links, where mi ¼
m0ðN=iÞ) and ) 2 ½0; 1Þ. Each link is then attached to a
random existing node. A network is initialized with
10m0N

) uncounted disconnected nodes. If ) ¼ 0, the
generated graphs have an exponential degree distribution.
If )> 0, the degree distribution is PðkÞ¼ ð1þm0=)Þ1=)=
½)ðkþm0=)Þ1þ1=)), i.e., approximately a power-law with
exponent ! ¼ 1þ 1=). The transformation rule T simply
extracts from a grown graph its subgraph composed of the
first NT nodes. With this T, the graphs of this type are also
self-similar, and the parameter transformation in definition
(1) is

!! !T ¼ !; hki ! hkiT ¼ hki
!
N

NT

"
1=ð!$1Þ

: (5)

As we show next, self-similarity of the considered en-
sembles (types I, II, and III), and the proportionality NT *
N are sufficient to prove the absence of a percolation
threshold for equilibrium scale-free graphs with exponent
!< 3 and for growing graphs with any!. The key property
which we will use is that the average degree of these self-
similar subgraphs is a growing function of the subgraph
depth in the nested subgraph hierarchy, meaning that hkiT
grows as NT decreases in Eqs. (4) and (5). The same
property characterizes many real networks as shown in
Fig. 1 and in [13,14].
The proof is by contradiction. As usual [4], let the

average degree be the order parameter for a percolation
transition. Suppose that the considered self-similar ensem-
bles do have a nonzero percolation threshold at some
critical value of the average degree hkic. Consider a graph
with the average degree below the threshold (hki< hkic)
which has no giant component. Since its subgraphs belong
to the same ensemble, their percolation threshold is also
hkic. But since their average degree increases with their
depth in the subgraph hierarchy, there exist deep enough
subgraphs whose average degree is above the threshold
(hkiT > hkic). We thus arrive at a contradiction since a
graph which does not have a giant component must contain
subgraphs which do have giant components.
We next compute the size gðpÞ of the giant component in

bond percolations with bond occupation probability p,
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confirming the absence of the percolation threshold in the
considered ensembles. We first focus on the equilibrium
networks of types I and II, in which case bond percolation
is equivalent to replacing the connection probability rij
with prij. Given a node i and a set of other nodes !, the
probability that i is connected to at least one node in ! is
one minus the probability that i is not connected to any
node in !, i.e., 1$ exp½Pj2! lnð1$ prijÞ). Node i be-
longs to the giant component if and only if it is connected
to the giant component of the graph without i. If ~gjðpÞ
denotes the probability that this i-deprived component
contains some other node j, then

giðpÞ ¼ 1$ exp
#X

j!i

~gjðpÞ lnð1$ prijÞ
$
: (6)

Since in small-world networks a single node cannot sig-
nificantly affect the percolation properties of the rest of the
graph, we identify ~gjðpÞ ¼ gjðpÞ, transforming Eq. (6)
into a self-consistent equation for giðpÞ. We note that
Eq. (6) does not use the treelike assumption. This equation
is thus valid for the type II graphs with strong clustering as
well as for zero-clustering type I graphs. It leads in the
thermodynamic limit to the following expression for the
probability gð#;pÞ that a node with expected degree #
belongs to the giant component:

gð#;pÞ ¼ 1$ e$#c ðpÞ; where c ðpÞ satisfies (7)

½c ðpÞ)3$!
aðpÞ ¼ ½c ðpÞ)2$!

!$ 2
$ "½2$ !; c ðpÞ); with (8)

aIðpÞ ¼
ð!$ 2Þ2
!$ 1

hkip; (9)

aIIðpÞ ¼ $ ð!$ 2Þ2
!$ 1

hki
I

Z 1

0
ln½1$ phðxÞ)dx (10)

for types I and II, respectively. The size of the giant
component is then gðpÞ¼R

$ð#Þgð#;pÞd#¼1$ð!$1Þ
E!½c ðpÞ), where E! is the extended exponential integral.
In diluted networks with p + 1, aIðpÞ , aIIðpÞ, and the
giant component size for both classes becomes

gðpÞ *
#
$ ð!$ 2Þ!$1

ð!$ 1Þ!$2"ð2$ !Þ hkip
$
1=ð3$!Þ

: (11)

The value of the critical exponent * in gðpÞ * p* is thus
* ¼ 1=ð3$ !Þ, agreeing with [15]. We emphasize that in
our case, this result is obtained without using the treelike
assumption. Therefore, quite surprisingly, this exponent
characterizes equilibrium scale-free networks with arbi-
trary clustering and degree correlations.
In nonequilibrium networks of type III, we can compute

an upper bound for *. Self-similarity of these networks,
coupled with the observation that any node belonging to
the giant component of a self-similar subgraph of a type III
graph belongs also to the giant component of the graph
itself, leads to inequality

gðpÞ % NT

N
g
!#

N

NT

$
)
p
"
: (12)

By choosing NT=N ¼ p1=), we obtain gðpÞ % p1=)gð1Þ.
Therefore the exponent * satisfies * & 1=) ¼ !$ 1. We
see that growth reduces significantly this exponent, com-
pared to the equilibrium case with the same !.
We next check our analytic results against large-scale

simulations. We generate type I and II networks using the
connection probabilities in Eq. (2) and hðxÞ ¼ e$x, respec-
tively. We do not allow #’s above the natural cutoff #c ¼
N1=ð!$1Þ. For all the three graph types, for each graph size
N ranging from 103 to 105, and for each value of the bond
occupation probability p, we generate 103 graphs, and for
each graph we perform bond percolation 104 times. For
each percolation we measure the size S1 of the largest
connected component in the graph using the fast algorithm
of Newman and Ziff [16], and calculate the average hS1i of
the largest component size and its fluctuations, i.e., sus-

ceptibility + ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðS1 $ hS1iÞ2i

p
, for each combination of

p, N, and graph type.
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FIG. 1 (color online). Ratio of the subgraph average degree
hkiT to the average degree hki in the whole graph as a function of
the inverse relative subgraph size N=NT for few real networks.
The subgraphs are obtained by removing nodes with degrees
below thresholds kT from the original network. To insulate
against finite-size effects; the data are shown only for subgraphs
of size NT=N > 0:1. Actors, actor collaborations from the
Internet Movie Database; Airports, USA airport network;
English, web of semantic associations between words in
English; Internet, topology of the Internet at the Autonomous
Systems level; Proteins, protein interaction network of
Saccharomyces cerevisiae; and Trust, mutual trust relationships
among individuals extracted from the Pretty Good Privacy data.
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FIG. 2 (color online). Relative size of the largest cluster
hS1i=N vs the analytical solution for type II networks with ! ¼
2:5, hki ¼ 3ð!$ 1Þ=ð!$ 2Þ, hðxÞ ¼ e$x, and average clustering
coefficient #c ¼ 0:5 (measured over degrees k > 1).
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Since the convergence to the thermodynamic limit in
scale-free networks is slow [17], it is difficult to accurately
measure exponent * in simulations. Nevertheless we ob-
serve an agreement, albeit slowly converging, between the
analytical solution for gðpÞ and simulations in Fig. 2. In
Fig. 3 we also show susceptibility +ðp;NÞ for equilibrium
and growing networks. Susceptibility displays peaks
whose positions pmaxðNÞ and heights +maxðNÞ depend as
power laws on the system size, pmaxðNÞ * N$1=,- and
+maxðNÞ * N!-=,- . Taken together, these two results con-
firm that the giant component emerges at p ¼ pmax, and
that the percolation threshold vanishes in the thermody-
namic limit N ! 1 where pmax ! 0 and +max ! 1.

In short, self-similar networks with subgraphs of grow-
ing average degree have no percolation threshold. The
proof can be generalized to any processes with phase
transitions whose critical points depend monotonously on
the average degree. Examples include, among others, the
absence of an epidemic threshold in epidemic spreading
processes, or the absence of a paramagnetic phase in the
Ising model on scale-free networks [3].

The identification of percolation universality classes for
general random networks is a notoriously difficult

problem—details tend to prevail. Nevertheless, the results
presented here lead us to conjecture that self-similar net-
works can be split into three general percolation universal-
ity classes, depending only on whether the average degree
in the nested subgraph hierarchy increases, remains
constant, or decreases with the subgraph depth, and
independent of any other network properties, such as clus-
tering, correlations, equilibrium vs nonequilibrium classi-
fication, etc.
This work was supported by DGES Grant No. FIS2010-

21781-C02-02; Generalitat de Catalunya grant
No. 2009SGR838; the Ramón y Cajal program of the
Spanish Ministry of Science; MICINN Project
No. BFU2010-21847-C02-02; NSF Grants No. CNS-
1039646, CNS-0964236 and CNS-0722070; DHS Grant
No. N66001-08-C-2029; and by Cisco Systems.

[1] S. Smirnov, CR. Acad. Sci. I-Math. 333, 239 (2001).
[2] J. Cardy, Ann. Inst. Henri Poincaré, A 4, S1, 371 (2003).
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FIG. 3 (color online). Bond percolation simulations for equi-
librium (types I and II) and growing (type III) networks.
(a) susceptibility + as a function of bond occupation probability
p and graph size N for the same network as in Fig. 2. (b) and
(c) position pmax and height +

max of the peak of + as functions of
network size N. The straight lines are power-law fits.
(d) exponents 1=,- and !-=,- in pmaxðNÞ * N$1=,- and
+maxðNÞ * N!-=,- for the type I and II graphs. (e) and
(f) Bond percolation simulations for nonequilibrium networks
(type III) with ) ¼ 1=4 (! ¼ 5) and m0 ¼ 2. The measur-
ed values of the scaling exponents are 1=,- ¼ 0:24ð3Þ and
!-=,- ¼ 0:3ð8Þ.
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